
©RAPID7 2020By Rapid7 Global Consulting

RESE ARCH

2020

 2

TABLE OF CONTENTS

Executive Summary 3

1. Scope, Planning, and Execution 4
Code Review 4

Internal Network Assessment 4

External Network Assessment 4

Social Engineering Engagements 4

Red Team Simulations 4

Engagement Types, Compared 5

Timing Considerations 5

This One Time on a Pen Test: I’m Calling My Lawyer! 7

2. Vulnerabilities Deep Dive 8
Inside Jobs 8

Outside Jobs 12

Vuln Popularity: What to Defend 16

This One Time on a Pen Test: Doing Well With XML 18

3. Collecting Creds 19
Understanding Usernames 19

Purloining Passwords 20

Hacking Hashes 21

Watch Out for Null Sessions 22

Privileged Accounts and Sensitive Data 23

Lockout Policies and 2FA 23

Securing Credentials 24

This One Time on a Pen Test: Outwitting the Vexing VPN 25

Detection, Response, and Defense 26
Fundamental Prevention 27

 3

Executive Summary
Penetration testing—the practice of simulating a criminal breach of a sensitive area in order to uncover and fix defensive
failures—is (still) a rather occult subject, as evidenced by the recent dust-up with local authorities in Dallas County, Iowa.
Employees from Coalfire Systems, a well-respected penetration testing firm, were arrested in September 2019 due to a
misunderstanding of the scope and fundamental legitimacy of penetration testing.1 Although charges were eventually dropped
in February 2020, the incident rocked the pentesting space. Clearly, everyone involved in offensive security needs to strive to
better explain the value of routine pentesting of our physical and virtual world.

This report aims to do just that by exploring the hows and whys of penetration testing, covering mainly internal and external
network compromises, with some supplementary data on social engineering and red team simulations. Over the course of 12
months worth of survey data, we found:

• Internal network configuration and patch management continue to provide “easy” soft targets to penetration testers,
who can often use off-the-shelf commodity attacks to escalate privileges and move laterally about the network without
being detected.

• Password management and secondary controls such as two-factor authentication (2FA) on the enterprise level are
severely lacking, leading to “easy” compromises involving both password spraying and decrypting hashed passwords
acquired during simulated breaches.

• As the world’s knowledge workers depend more than ever on VPNs and internet-based applications, rather than onsite,
traditionally internal network controls, penetration testers are finding significant flaws in those VPN terminators and
custom web apps.

While none of this is particularly shocking to even the most Pollyanna security researcher (we are a cynical bunch), this is solid
data that can help enterprises around the world understand what to expect from their next penetration test and be used as a
checklist of what to investigate and remediate before then.

Finally, the survey data for this report was collected from June 2019 through June 2020 and collected responses from 206
engagements total. The busiest individual pen tester in the world tends to be involved in fewer than 25 penetration tests a
year (assuming an average engagement time of about eight to 10 days), so this paper should be illuminating for any pen tester
interested in industry-wide trends.

1 https://www.theregister.com/2020/08/05/coalfire_pentest_iowa_black_hat/

https://www.theregister.com/2020/08/05/coalfire_pentest_iowa_black_hat/

 4

Scope, Planning,
and Execution
Before diving into the results of this year’s Under the Hoodie survey, we will first define some
terms. After all, the purpose of this paper is to demystify penetration testing, so let’s get to
some jargon busting.

Code Review

Code reviews tend to be the least “in-production” style of an engagement. They tend to
focus on just one application or product, to which the penetration tester has full or nearly full

access to. The goal of this engagement is most like an aggressive quality assurance review of the system or device under test,
with the penetration tester’s goal being to find unexpected, security-relevant bugs in that system or device.

Internal Network Assessment

Internal network assessments are comprehensive explorations of the client’s internal networks. This tends to include the types of
systems you’d expect to see “locally” on the LAN: Windows clients and servers, printers, internal applications, and Wi-Fi access
points. Often, the tester is invited onsite or is given access to an internal access point through a VPN connection. The ultimate
goal of an internal network assessment is to document and demonstrate information security risks inherent in the internal
network that might be compromised by either a motivated, malicious insider, or exploited by an attacker who has achieved an
internal network presence through some other means. This, of course, implies that vulnerabilities might be exploited externally,
which brings us to…

External Network Assessment

External assessments, like internal assessments, seek out vulnerabilities and misconfigurations in the client’s IT infrastructure,
but, as the name suggests, only really those that are visible and reachable to an externally based attacker. So, these
engagements tend to feature a lot of web application hacking, as well as the mapping and exploitation of services that are
exposed to the internet at large: VPN endpoints, email, and any services that are exposed to the outside world by accident (Telnet
consoles in my DMZ? It’s more likely than you’d think!).

Social Engineering Engagements

Social engineering engagements almost always include some email component, since that is still the favored method for
extracting password information (often through something like a fake login page the targeted victim is directed to) or dropping
initial malware on the victim’s computer that grants an external attacker insider access to the organization. More occasionally,
consultants are tasked with a physical social engineering engagement, where the task at hand is to slip into a restricted or
confidential area of the client organization’s physical infrastructure—think locked networking closets, restricted areas of a
manufacturing floor, or something of that ilk.

Red Team Simulations

Red team exercises are fairly elaborate affairs and tend to combine elements of a social engineering exercise (to gain the trust of
a key insider), an external network assessment (to map out and exploit the internet-exposed exposures and vulnerabilities of the
network), and an internal network assessment (to escalate privileges from that of an external stranger to an internal superuser).
All of this happens while the client’s normal detection and defense technologies are active. If a network assessment could be
thought of as a 150-point automobile inspection, assessing the system as a whole, a red team engagement is more like a crash
test; every system is put to the test in an exercise that most closely resembles a real-world attack.

 5

Engagement Types, Compared

With these distinctions between engagement types defined, we can now take a look at the more broad categories of “inside”
jobs versus “outside” jobs, and how often clients request each kind. Figure 1 shows a breakdown by engagement type over the
surveyed set of engagements.

You can think of these broadly as falling into two buckets: “inside jobs” and “outside jobs.” With inside jobs, the attacker already
has a leg up by having access to the internal network or source code, or physical access to a device under test. By combining
Code Review (2.43%) and Internal Network (26.70%), we can see that 29.13% of all engagements are inside jobs. Now, this
might sound unfair, but organizations are wise to test their defensive capabilities against both the “disgruntled employee” style
of inside attacker, as well as the attacker who has crossed from the “outside” to the “inside,” through whatever means.

“Outside Jobs” are where the traditional external attacker operates. External Network (51.94%), Red Team (2.91%), and Social
Engineering (9.71%) all tend to be from the “outside” and total up to 64.56%. What does this tell us? Well, pen test clients tend
to be more interested in external threats rather than internal ones. In fact, they prefer externally based assessments more this
year than last year—last year’s “outside” bucket totaled up to 50% of all engagements, with “inside” accounting for 39.4% (in
both years, “Other” was unchanged at about 8%). Since our data covers the period of worldwide lockdown due to pandemic
concerns, this bump in favoring external to internal this year over last is entirely expected.

Timing Considerations

So far, these Under the Hoodie reports capture only those penetration tests that were performed by Rapid7 or Rapid7-hired
subcontractors. Because of this lack of diversity in penetration testing providers (n=1), we should expect that the number of
hours contracted to be fairly standardized. In the past, we saw exactly this—engagements tended to land right on the 80-hour
mark for the number of hours contracted, with only minor variations in the time allotted for work.

However, in this year’s data, we see more diversity in the hours contracted, as shown in Figure 2.

Figure 1: Penetration Testing Assessments Performed

 6

Here, we can see that while there are clearly preferred chunks of time, there are quite a few categories of total times across all
engagement types. It turns out, each client engagement is pretty unique, and there really isn’t a one-size-fits-all time box that
we can conveniently stuff every engagement into. In fact, this diversity in hours contracted speaks to the importance of those
initial scoping and planning calls between the client and the penetration tester—any given engagement may be about 35 hours
worth of work, all the way up to 150 hours. It all depends on the complexity and size of the network, as well as how deep the
client wants to go.

What doesn’t change too much is the percentage of time spent planning and performing reconnaissance on a given client’s
network. In the more complex engagement types of social engineering and red teaming, as much as 25% of the total time is
devoted to these pre-attack activities, while internal and external network assessments tend to jump right off the blocks with
only perhaps 10% of the time spent on recon.

Figure 2: Hours Contracted by Assessment Type

Social
Engineering

Engagement

Red
Team

Attack
Simulation

Other

Internal
Network

Compromise

External
Network

Compromise

Code
Review

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140

Source: Rapid7

External Network Compromise

Internal Network Compromise

Red Team Attack Simulation

Social Engineering Engagement

0 10 20 30 40 50 60 70 80 90 100
Time (% of Engagement)

Source: Rapid7

Figure 3: Engagement Time Spent on Planning and Reconnaissance

Displayed set includes only engagements where details on time spent provided (n = 148)

 7

THIS ONE TIME ON A PEN TEST:

I’m
Calling My
Lawyer!
By Jonathan Stines

As part of a telephone pretexting engagement for a law firm, we were provided
with their employee’s phone numbers to call in an attempt to identify sensitive
information, harvest credentials, and obtain a reverse shell on their machines.

We first started calling personnel posing as an IT analyst, asking general
questions about pain points users had been experiencing in order to build trust
with the individuals and allow them to voice their complaints. After all, people
love complaining about IT! Once this rapport was established, we moved to
more pointed questions about VPN technologies in use, endpoint protection
and versions in use, as well as other technologies in use that could be used later
as part of another pretext.

Now that we knew about their endpoint protection solution’s vendor and
version, we then crafted a payload designed to evade that specific security tool.
Also, with the version of the company’s remote access VPN client, we came
up with a pretext where we again posed as an IT analyst dialing personnel who
were on a list of folks who had outdated VPN clients that needed to be updated.

We called the employees and explained that their version of the VPN client was
outdated, had multiple known vulnerabilities, and needed to be updated. We
then instructed them to press start, run CMD, and run our stager one-liner. Once
this took place, the one-liner would download our hosted payload assembly and
run in the user’s memory, and establish a reverse-shell to our Command and
Control (C2) server, allowing us full access to their workstation.

With internal access to their network, we then performed high-level
reconnaissance such as identifying members of security groups such as
Domain Administrators and where their Domain Controllers were located.
Additionally, we performed a technique known as “Kerberoasting,” which
returned Kerberos authentication hashes for service accounts on the domain.
During testing, we cracked one of the Kerberos hashes for an account that was
a member of the highly privileged Domain Admins security group.

At this point, we contacted the customer, explained how far we had gotten,
and asked for further instruction. They instructed us to stop making phone
calls immediately, as we had sufficiently demonstrated risk from a telephone
pretexting perspective.

 8

Vulnerabilities
Deep Dive
The types of vulnerabilities found and exploited by pen testers depend largely
on the type of penetration test being performed. This section compares these
vulnerability profiles between inside jobs (internal network assessments and code
reviews) and outside jobs (external network assessments, social engineering
engagements, and red team simulations).

Inside Jobs

Internal network assessments end up focusing quite heavily on Windows-based attacks, and for good reason. After all,
Windows clients abound in the enterprise environment regardless of the industry or size of the target, so aspiring and practiced
pen testers alike would do well to make sure their tooling and experience matches with the typical Windows environment. Figure
4 details the most common types of attacks that are successful in an internal environment.

35 (14.00%)

33 (13.20%)

27 (10.80%)

22 (8.80%)

20 (8.00%)

20 (8.00%)

15 (6.00%)

13 (5.20%)

13 (5.20%)

11 (4.40%)

7 (2.80%)

6 (2.40%)

5 (2.00%)

5 (2.00%)

5 (2.00%)

3 (1.20%)

3 (1.20%)

2 (0.80%)

2 (0.80%)

2 (0.80%)

1 (0.40%)Open SMTP Relay/Message Forgery

Java RMI Insecure Endpoint

Wireless signal leakage

WPA-Enterprise information leakage

Tomcat Weak or Default Password

Weak WPA-Enterprise configuration

EAP wireless client misconfiguration

Failure to detect rogue access points

SMTP Insecure Strings

WPA authentication weaknesses

Open Database Access (no password or default password)

Insecure Printer Configuration

IPMI Information Leakage

Obsolete/Unsupported Software in Use

Anonymous FTP

Critical Security Patches Missing

Other

Cleartext Credentials Stored in Memory

Kerberoast

LLMNR and NetBIOS Poisoning

SMB Message Signing Not Required

Source: Rapid7

Figure 4: Internal Engagement: What Vulnerabilities Did You Find?

 9

Windows Everywhere
The top three most common vulnerabilities encountered in these internal engagements are SMB Message Signing Not
Required (14%), LLMNR and NetBIOS Poisoning (13.2%), and Kerberoast (10.8%). Taken together, this is a powerful set of
vulnerabilities that can quickly elevate an attacker to Domain Admin (DA) privileges.

The first, involving SMB message signing, is common in a mixed environment of Microsoft and non-Microsoft SMB clients.
SMB message signing is a fundamental cryptographic control that lets SMB clients and servers properly authenticate to each
other. However, it’s not enabled by default in most situations. Unfortunately for Windows administrators, SMB signing is often
not required—or sometimes not supported—by non-Microsoft implementations of SMB. In addition, SMB message signing
is only default-enabled on Windows for Domain Controllers, not other Windows clients or servers. While the procedures for
enabling SMB message signing are well documented by Microsoft,2 many Windows Administrators aren’t fanatical about
enforcing this basic cryptographic control, especially if the asset population of the network is either very dynamic or not well
known to the IT operations staff.

Finally, troubleshooting SMB connectivity issues also tends to start with disabling SMB signing temporarily, and temporary
troubleshooting measures are notorious sources for persistent enterprise misconfigurations. This is all to say that if SMB
signing isn’t strictly required by every host on the network, pen testers can take advantage of this lack of cryptographic
assurances of destination server identity to get in a position to steal SMB-based credentials, if only they can get these clients to
talk to a fake server the client might already have a network relationship with.

That brings us to the second most popular vulnerability, LLMNR and NetBIOS spoofing. If a client doesn’t already have cached
network address information for a given server on the internal network, they might try to perform a “Link-Local Multicast Name
Resolution” (or LLMNR), and whatever machine on the local network responds first is the one that the client will believe is the
destination server.3 Of course, if both the real client and the real server required SMB signing, this impersonation wouldn’t last
very long, since the spoofed SMB server wouldn’t be able to authenticate correctly. However, as discussed above, pen testers
often run into situations in which SMB signing isn’t required on internal engagements.

So, combining the two issues above gets an attacker in a pretty solid position to start acquiring Windows password hashes.
A client, which doesn’t require SMB signing, needs to find a server it doesn’t have an address for, and that server (for whatever
reason), doesn’t have a pre-defined DNS entry. It asks the network, “New cache, who dis?” and the attacker’s machine helpfully
responds, “It me! Who dis?” and challenges the client for a Windows authentication. The client, believing the attacker’s server,
provides a hash as part of the SMB challenge/response, which can then be cracked later by the attacker and reused to log in to
the client directly.

Once the attacker has access to a Windows domain user’s account, they typically can log in to any workstation in that
domain—specifically, workstations that may be running services that need a Kerberos-enabled service account to run. Enter
the “Kerberoasting” attack, where an attacker on a local machine can peek at the running processes and perhaps get access
to an encrypted (but crackable) version of a domain service account’s password.4 Service accounts, like those that run domain
backups or antivirus, tend to run with pretty high privileges, and if their passwords are set by humans, they tend to be pretty
crackable in short order.

Finally, some services don’t take advantage of domain-based Kerberos tickets for authentication, as indicated by the No.
4 vulnerability encountered, Cleartext Credentials Stored in Memory. Again, if an attacker is able to log in to a domain-
connected workstation, those credentials are merely a Mimikatz5 session away.

2 https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/microsoft-network-client-digitally-sign-communications-always

3 NetBIOS works in basically the same way (using local network broadcast requests), to the point of being functionally identical, which is why both techniques tend to be lumped

together.

4 How this all works is actually pretty complicated, but well explained by Rob “Mubix” Fuller in his three-part blog series, starting at: https://room362.com/post/2016/kerberoast-pt1/.

5 https://github.com/gentilkiwi/mimikatz, first released by Benjamin Delpy, and reimplemented in nearly every penetration testing framework.

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/microsoft-network-client-digitally-sign-communications-always
https://room362.com/post/2016/kerberoast-pt1/
https://github.com/gentilkiwi/mimikatz

 10

Not Just Windows Misconfigurations
Of course, most internal networks have several types of operating systems and networked software running, not just the
standard, default configurations of Microsoft clients and servers. For these situations, pen testers can seek out software with
Critical Security Patches Missing (leveraged 8% of the time in this study) or running Obsolete or Unsupported Software
(present in 5.2% of engagements), and draw on the thousands of known, pre-existing proofs-of-concept or working exploits
available to them.

MS08-067 and MS17-10
Two vulnerabilities stand out as pretty standard go-tos for any internally scoped network assessment: MS08-067, which was
weaponized in the Conficker exploit back in 2008, and MS17-10, which was the central vulnerability to the EternalBlue exploit kit
of 2017. These two issues are among the famous vulnerabilities of the past decade, so you would think that IT and IT security
teams would have long ago excised these vulnerabilities from their internal networks.

Unfortunately, that’s not the case, as Figure 5 shows:

The Unknown Unknowns
Patch and asset management is a critical function of IT operations, and exploiting those unpatched and antique systems
is often seen as the first and primary job of the penetration tester so that IT ops can know where their patch management
program has blind spots. While this is certainly an important aspect of penetration testing, the fifth most popular vulnerability is
the ever-elusive Other (even with missing patches at 8% of the time). This category, and its fifth-place showing, demonstrates
the true value of penetration testing. So far, we have not figured out how to totally automate security controls (or testing
those controls), and so we rely on the creativity and situational awareness of the savvy pen tester to illustrate new, novel, and
unanticipated vulnerabilities in the internal network.

1 (100%) 26 (60%) 13 (30%)

4 (9%)

1 (50%) 1 (50%)

External Network Compromise Internal Network Compromise Red Team Attack Simulation

No Yes No Yes No Yes

No

Yes

Vulnerable to
Eternal Blue

Vulnerable to
Conficker

Source: Rapid7

Figure 5: Were Any Hosts Vulnerable to EternalBlue and/or Conficker?

Count reflects only provided responses. Percentages calculated within assessment types.

 11

Lateral Movement Techniques
Once a pen tester has achieved access to at least one machine in the network, the next job is typically to leverage that access
to move around the network. There are a few ways to perform this sort of lateral movement, as we can see in Figure 6.

Two of these techniques, WMI and PSExec, use built-in Windows system interfaces to extend control around the network.
They are commonly used in both normal network maintenance and as techniques leveraged by the notorious WannaCry and
NotPetya self-propagating worms of 2017 and 2018. Most discussions of these worms focus on the EternalBlue exploits
implemented6 but don’t talk about the real reason why these worms are so effective: They use the same sophisticated
techniques for lateral movement as real attackers and pen testers alike. By recovering and reusing passwords on compromised
systems, attackers can often flit from machine to machine in search of their ultimate targets.

Code Review Corner
Since code review assessments only comprise about 3% of our total corpus, we don’t really have much statistically relevant
information about the types of vulnerabilities that are uncovered in code review. That said, the vulnerabilities we did find
covered the spectrum of typical web application vulnerabilities: SQL injection, reflected XSS, insecure data transfer and storage,
CSRF, and all the rest. In other words, they looked pretty much just like external web application-centric pen tests (see the next
section for more details on those). With so few examples, though, it’s difficult to say whether this is normal or not.

6 Including in this very paper, just a few paragraphs ago!

15 (40.5%)

9 (24.3%)

7 (18.9%)

6 (16.2%)RDP

PSExec

Some other technique

WMI

Source: Rapid7

Figure 6: Internal Engagements: What Lateral Movement Technique Did You Leverage?

Set only includes cases where lateral movement was achieved.

 12

Outside Jobs

Most penetration tests at least start off externally based—about 65% or so, as detailed in Part 1 of this paper. Thus, these
explorations focus heavily on web-based technologies that are more or less platform-independent, as we can see in Figure 7:

37 (10.48%)
25 (7.08%)

22 (6.23%)
20 (5.67%)

19 (5.38%)
17 (4.82%)

13 (3.68%)
13 (3.68%)
13 (3.68%)

12 (3.40%)
12 (3.40%)

11 (3.12%)
11 (3.12%)

10 (2.83%)

9 (2.55%)
9 (2.55%)
9 (2.55%)
9 (2.55%)

8 (2.27%)
8 (2.27%)
8 (2.27%)

7 (1.98%)
7 (1.98%)
7 (1.98%)

6 (1.70%)
6 (1.70%)

4 (1.13%)
4 (1.13%)

3 (0.85%)

2 (0.57%)
2 (0.57%)
2 (0.57%)
2 (0.57%)

1 (0.28%)
1 (0.28%)
1 (0.28%)
1 (0.28%)
1 (0.28%)
1 (0.28%)

Lack of code obfuscation

Lack of Jailbreak Protection, Bypassed Anti-Tampering Protection

Password change does not require current password for validation

Sensitive information in server response

SMB email client attack

SMTP email address enumeration

Excessive cross-origin resource sharing (CORS)

File upload protection bypass

Insecure password storage

Password field with autocomplete enabled

Cleartext submission of password or other sensitive data

Open redirection

Session token in URL

Internal IP disclosure

Privilege escalation

Cross Site Request Forgery (CSRF)

Missing security patches

Overly long session duration

Excessive services exposed to the internet

Stored XSS

Verbose application errors

Cacheable HTTPS sensitive data

Lack of input validation (HTML injection, not XSS)

Reflected XSS

TCP timestamps enabled

Default documents discovered

Missing HttpOnly attribute on session cookie

OWA Timing Attack

Insecure Direct Object Reference (IDOR)

VPN supports IKE aggressive mode

Information leakage

Missing Secure attribute on session cookie

Outdated software

Clickjacking

Other

User enumeration

Missing Strict-Transport-Security response header

Weak password policy

Weak Transport Layer Security

Source: Rapid7

Figure 7: External Engagement: What Vulnerabilities Did You Find?

 13

These vulnerabilities also aren’t what we would normally consider “high-severity” vulnerabilities (those ranking at 8.5 or above
on the Common Vulnerability Scoring System). Such vulnerabilities nearly always have some kind of remote code execution
component, but the top vulnerabilities encountered by external penetration testers are:

• Weak Transport Layer Security (10.48%)

• Weak Password Policy (7.08%)

• Missing Strict-Transport-Security (STS) response headers (6.23%)

• User enumeration (5.67%)

All of these vulnerabilities are more information leak-oriented, and require some other action on the part of the attacker—either
intercepting normal communication due to weaker cryptographic controls, or a credential-stuffing or password-spraying based
attack to at least gain post-authentication privileges to an application. It isn’t until we get down to Other (5.38%), Outdated
Software (3.68%), and Insecure Direct Object Reference (IDOR) (3.4%) where we start seeing more severe, straight-shot-to-
command-execution vulnerabilities and exploits.

Web Application Technologies
Once an external pen tester discovers an issue with a web application, it’s often useful to have a passable, working knowledge
of what that web application was written in.

24 (48.0%)

11 (22.0%)

7 (14.0%)

1 (2.0%)

1 (2.0%)

1 (2.0%)

1 (2.0%)

1 (2.0%)

1 (2.0%)

1 (2.0%)

1 (2.0%)

C++

Express.js

HTML

Perl

Rails

SOAP & XML Data

Tomcat

WordPress CMS

PHP

Java

ASP.NET

Source: Rapid7

Figure 8: What Technology Was the Web Application Built On?

 14

For external and internal applications alike, we see that ASP.NET (48%) tops the list, followed by Java (22%) and PHP (14%).
This may come as sad news to the web app developer who is considering a career in web app penetration testing, since these
web app technologies don’t fare very well on StackOverflow’s recent “Most Loved Languages” survey.7

Indeed, the hottest web app frameworks like Rust, Kotlin, and TypeScript rarely come up in enterprise penetration tests (yet).
This tells us that enterprise IT, at least when it comes to web application development, has some catching up to do with the
avant garde, and could certainly benefit from an infusion of these technologies that happen to not just be more loved, but are
fundamentally more modern and type-safe, having built-in backstops to prevent many common web app vulnerabilities.

Electronic Social Engineering
Many advanced external engagements involve electronic social engineering (ESE). While these tend to exploit “Layer 8”
vulnerabilities (those involving aspects of human interactions and tendencies like trust, fear, or greed), there is still a significant
technological component to such attacks, as Figure 9 illustrates:

Spoofed domains show up in 18% of ESE survey responses, and only rarely did respondents need to evade DMARC (8.33%).
This illustrates how important anti-spoofing defenses are in protecting employees from falling for these attacks. DMARC, or
Domain Message Authentication Reporting, makes it difficult for phishing emails to purport to come from within the targeted
domain, which means attackers need to craft more convincing phishing lures using other, easier-to-spot techniques. Indeed,
Rapid7’s recent re-assessment of the Fortune 500 and how their DMARC status fares8 shows some positive movement.

7 https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved (Note that while ASP.NET is not specifically surveyed by StackOver-

flow, most ASP.NET applications are written in C#.)

8 https://blog.rapid7.com/2019/10/18/what-a-difference-a-year-makes-revisiting-our-inaugural-fortune-500-icer-one-year-later/

11 (8.33%)

15 (11.36%)

24 (18.18%)

9 (6.82%)

22 (16.67%)

16 (12.12%)

11 (8.33%)

24 (18.18%)

Did you get shells on client workstations?

Did you ask directly�for secrets or sensitive information?

Did you need to evade DMARC or some other inbound email protection?

Did you deliver malware? (executables, Word macros, etc.)

Did you need to evade antivirus?

Did you need to evade anti-spam?

Did you direct victims to a�website?

Did you use a spoofed domain?

Source: Rapid7

Figure 9: Email-Based Electronic Social Engineering: What Happened?

Percentages calculated based on aggregated total count of attempts.

https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://blog.rapid7.com/2019/10/18/what-a-difference-a-year-makes-revisiting-our-inaugural-fortune-500-icer-one-year-later/

 15

From 2019 to 2020, we’ve seen a 20% increase in Fortune 500 sites that went from “No DMARC” to at least a DMARC policy set
to at least one of “none,” “quarantine,” or “reject,” and a 40% increase of “reject” DMARC policies over the same period. While it’s
great to see that DMARC deployment is chugging along, it does appear that these benefits aren’t being distributed evenly over
all industries, and some industries are still just getting started with “none” policies.

Also, the most common “payload” for a ESE attack is to direct users to an attacker-controlled website (18.18% of the time),
which is much more common than delivering malware (11.36%). We expect that using websites as intermediaries to collect
passwords and attack browser sessions will be more successful over time, due in part to browser manufacturers pushing
for browser-controlled, encrypted DNS (which escapes inspection by an enterprise IT security authority),9 and the pandemic-
created diaspora of knowledge workers around the world (who are much more likely to read email and browse the web outside
of an enterprise-controlled VPN).

9 https://spectrum.ieee.org/tech-talk/telecom/security/the-fight-over-encrypted-dns-boils-over

No DMARC reject quarantine none

2019

2020

Source: Rapid7

Figure 10: Fortune 500 DMARC Status: 2019 vs. 2020

HouseholdProducts (n=12)

Chemicals (n=14)

Telecommunications(n=8)

Aerospace& Defense (n=13)

Hotels, Restaurants & Leisure (n=11)

Industrials (n=18)

Food, Beverages& Tobacco(n=24)

Apparel (n=5)

Energy (n=59)

Materials (n=19)

Motor Vehicles & Parts (n=11)

Retailing (n=46)

Food & Drug Stores (n=6)

Media (n=11)

Engineering & Construction (n=12)

Business Services (n=20)

Wholesalers (n=26)

Technology (n=39)

Health Care (n=40)

Financials (n=88)

Transportation (n=18)

p=none p=quarantine p=reject No DMARC

Updated: August 2020

Figure 11: Fortune 500 DMARC Status

https://spectrum.ieee.org/tech-talk/telecom/security/the-fight-over-encrypted-dns-boils-over

 16

Red Team Simulations
Like the Code Review category of inside jobs, red team simulations are fairly low-count in our collected data, and so, it’s difficult
to uncover any statistically significant findings from their engagement reports. That said, the No. 1 vulnerability type uncovered
in these simulations is “Other,” which speaks to the fact that these engagements tend to require a fair amount of situational
awareness and on-the-spot creativity to complete effectively. We suspect this is because the kind of customer that signs up for
a red team engagement is already pretty far along the spectrum of security maturity, and has their business locked down pretty
tight.

Vuln Popularity: What to Defend

Regardless of assessment type—inside job or outside job—it can be illuminating to see which vulnerabilities rise to the top of the
overall list of those reported by our penetration testers.

Social Engineering Engagement
Code Review

Red Team Attack Simulation

Internal Network Compromise

External Network Compromise

WPA authentication weaknesses
Privilege escalation
Internal IP disclosure
Overly long session duration
Open Database Access
Cross Site Request Forgery
Verbose application errors
Stored XSS
Excessive services exposed to the internet
TCP timestamps enabled
Reflected XSS
Missing security patches
Lack of input validation
Cacheable HTTPS sensitive data
Default documents discovered
OWA Timing Attack
Missing HttpOnly attribute on session cookie
Insecure Printer Configuration
VPN supports IKE aggressive mode

Insecure Direct Object Reference

Outdated software

Obsolete/Unsupported Software in Use

Missing Secure attribute on session cookie

IPMI Information Leakage

Information leakage

Anonymous FTP

Clickjacking

Username enumeration

Critical Security Patches Missing

Missing Strict-Transport-Security response

Cleartext Credentials Stored in Memory

Weak password policy

Kerberoast

LLMNR and NetBIOS Poisoning

SMB Message Signing Not Required

Weak Transport Layer Security

Other

t
w

e

e

W

O
O
C
V
S

T

C

O

V

O

O

A

C

C

C

W

S

W

O

Figure 12: Vulnerabilities by Engagement Type

“Other” includes vulnerability types that had fewer than five occurrences. Vertical bands correspond to occurrence counts.

 17

Here, we can see that Other is the most common vulnerability type, which further underlines the assertion that penetration
testers can’t just go through the motions of network compromise. Each network is unique in its own way, and a successful
penetration test relies on the expertise of a seasoned and dedicated penetration tester noticing when something seems off.

Aside from those unknown unknowns, IT operations teams would do well to survey their own networks for the most common
vulnerabilities exploited before the penetration tester arrives on the scene. This is especially true in industries that have a
regulatory requirement for
regular penetration tests.
Preparing for a predictable
engagement by taking care of
these basics not only gives the
penetration testers more time
to focus on the less-explored
areas of your network, but
also hardens the enterprise
environment against the most
common types of attacks that
criminals exercise.

Year-Over-Year Changes
This is the second Under the
Hoodie report Rapid7 has
produced using the same
vulnerability questionnaire, which
gives us an opportunity to see
how individual vulnerabilities are
faring, year-over-year, against our
penetration testers.

The two steepest increases
involve VPN supports IKE
aggressive mode and Insecure
Direct Object Reference (IDOR),
which is telling. The VPN-based
investigations almost certainly
reflect the new, mid-pandemic
reality of VPN reliance to get
a suddenly huge population of
stay-at-home workers online
and productive, while the IDOR
exposures similarly reflect an
increase in attention on how
web applications are written and
how they can be exploited to run
arbitrary code from an external
position.

37

35

33

31

25

24

22

21

20

17

15

13

13

13

13

13

12

12

11

11

11

10

9

9

9

9

9

8

8

8

7

7

7

6

6

6

6

5

5

5

4

4

3

3

3

2

2

2

2

2

2

2

42

40

29

29

25

21

21

17

17

13

13

12

12

11

11

11

10

9

9

8

7

7

7

7

6

6

6

6

6

6

5

5

5

5

4

4

4

4

4

4

3

3

3

3

3

2

2

2

2

2

2

Weak Transport Layer Security

SMB Message Signing Not Required

LLMNR and NetBIOS Poisoning

Kerberoast

Weak password policy

Cleartext Credentials Stored in Memory

Missing Strict-Transport-Security response header

Critical Security Patches Missing

Username enumeration

Clickjacking

Anonymous FTP

Information leakage

IPMI Information Leakage

Missing Secure attribute on session cookie

Obsolete/Unsupported Software in Use

Outdated software

Insecure Direct Object Reference

VPN supports IKE aggressive mode

Insecure Printer Configuration

Missing HttpOnly attribute on session cookie

OWA Timing Attack

Default documents discovered

Cacheable HTTPS sensitive data

Lack of input validation

Missing security patches

Reflected XSS

TCP timestamps enabled

Excessive services exposed to the internet

Stored XSS

Verbose application errors

Cross Site Request Forgery

Open Database Access

Overly long session duration

EAP wireless client misconfiguration

Internal IP disclosure

Privilege escalation

WPA authentication weaknesses

Failure to detect rogue access points

SMTP Insecure Strings

Tomcat Weak or Default Password

Open redirection

Session token in URL

Cleartext submission of password or other sensitive d

Java RMI Insecure Endpoint

Weak WPA-Enterprise configuration

Excessive cross-origin resource sharing

File upload protection bypass

Insecure password storage

Lack of code obfuscation

Password field with autocomplete enabled

Wireless signal leakage

WPA-Enterprise information leakage

LLMNR and NetBIOS Poisoning

SMB Message Signing Not Required

Cleartext Credentials Stored in Memory

Critical Security Patches Missing

Kerberoast

Weak password policy

Weak Transport Layer Security

Anonymous FTP

Obsolete/Unsupported Software in Use

Information leakage

Username enumeration

Missing Strict-Transport-Security response header

Outdated software

Clickjacking

Insecure Printer Configuration

Missing Secure attribute on session cookie

Missing HttpOnly attribute on session cookie

IPMI Information Leakage

OWA Timing Attack

Open SMTP Relay/Message Forgery

Cacheable HTTPS sensitive data

Default documents discovered

Reflected XSS

Stored XSS

EAP wireless client misconfiguration

Failure to detect rogue access points

File upload protection bypass

Internal IP disclosure

TCP timestamps enabled

Verbose application errors

Missing security patches

SMB email client attack

Wireless signal leakage

WPA-Enterprise information leakage

Excessive services exposed to the internet

Lack of input validation

Open Database Access

SMTP Insecure Strings

SQL injection

Tomcat Weak or Default Password

Cross Site Request Forgery

Excessive cross-origin resource sharing

Insecure Direct Object Reference

Open redirection

WPA authentication weaknesses

File path traversal

Overly long session duration

SMTP email address enumeration

Some other WiFi vulnerability or misconfiguration

VPN supports IKE aggressive mode

Weak WPA-Enterprise configuration

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Prior Current
Period

Rank

Source: Rapid7

Figure 13: Prior vs. Current Vulnerabilties

Ordering based on in-period relative frequency. Numeric labels reflect count of vulnerability instances.

 18

THIS ONE TIME ON A PEN TEST:

Doing
Well With
XML
By: Tommy Dew

Most recently, I was on what appeared to be a normal web application
penetration test. Typically, our clients will provide us with a few user accounts,
such as an admin account and maybe a few different user roles. They’ll also
give us any relevant API documentation and examples, or design information.
However, one thing that stood out to me in the documentation of the application
was how by design, the application specifically allowed for uploading XML files.
Once I began going through the usual web application testing methodology and
got a feel for the application, I began creating specifically crafted XML files that
would allow for XML External Entity processing.

If you’re not familiar with how XML External Entity processing attacks work,
it goes something like this: A penetration tester, or malicious actor, will target
application functionality that allows for the processing of malicious XML data by
a weakly configured XML parser. If the malicious XML is successfully processed
by the XML parser, the tester may introduce external entities into their payload,
which could allow them to retrieve the web application server’s system files
(think /etc/passwd), or perform Server Side Request Forgery (SSRF) attacks,
instructing the web application server to make any HTTP request to any desired
URL, given there isn’t any network egress filter server-side.

Since I knew that the web application accepted XML, I wanted to see whether
it would blindly accept malicious XML that would make a request to a Rapid7-
controlled web server. First, I crafted an XML file that would simply instruct
the web application server to make a GET request to me. On my jump box, I
fired up a simple temporary web server, then submitted the malicious XML to
the web application. Instantly, I received an ‘GET’ request from an IP address.
After a quick verification, I confirmed that it was the web application server’s IP
address!

After knowing that the web application accepted my malicious XML file, I wanted
to demonstrate additional risk and see whether I could perform additional
actions, such as the SSRF attack mentioned previously. After a quick discussion
and recommendations with some team members, I again crafted a new XML
file, but this time, I defined the XML file to instruct the web application server to
attempt the retrieval of a nonexistent file on my jump box. The web application
server was Windows, so we knew that if the attack was successful, it would also
transmit Windows NTLM hashes to me. Next, I fired up Responder, a program
that allows for capturing Windows hashes, on my server and uploaded the
payload to the application, which then successfully transmitted the web server’s
hashed Windows credentials to me!

However, the credentials were for a Windows machine account, which are
notoriously difficult to crack during a reasonable time of a web application
penetration test. However, my client responded positively and worked with us to
resolve the vulnerability in a couple of days.

While we do not come across this type of vulnerability in every application
assessment, you can bet that it’s something we always test for, especially if
an application allows for uploading content or submission of XML through an
endpoint. We believe that the demonstration of risk by combining XML with
SSRF also translated the level of severity to the client and allowed them to
dedicate resources to the application to resolve the issue immediately. This is
one of the most rewarding aspects of penetration testing, when you can see
your work making a positive impact and improving security postures, where
possible.

 19

Collecting Creds
While exploiting vulnerabilities and misconfigurations is at the heart
of any penetration test, just as critical is how well the credentials used
in an enterprise are protected. After all, while popping shells with a
carefully crafted buffer overflow is great fun, it’s often easier to simply
impersonate an authorized user to perform otherwise unauthorized
actions. In addition, the purpose of many straight technical attacks is
to recover a key password and assume a role of Domain Administrator.
Figure 14 shows just how often credentials are compromised in a given
scenario.

Here, we can see the stark difference between
inside jobs and outside jobs; external penetration
tests often aren’t concerned with credential theft,
while internal network compromises are normally
all about the credentials. We can see, too, that
the more advanced engagements involving red
team attack simulations and social engineering
engagements are nearly always successful in
purloining passwords.

Understanding Usernames

Typically, the first step in collecting credentials is
acquiring a list of valid usernames. In Figure 15,
we can see the various methods attackers use to
recover this half of a working credential.

External
Network
Compromise

Internal
Network
Compromise

Red
Team
Attack
Simulation

Social
Engineering
Engagement

No Yes

Source: Rapid7

Figure 14: Did You Capture Any Credentials?

Subsetted to cases where credential capture was in scope for the engagement.

NTDS Dump

Document metadata

Provided

Website enumeration
(myBFF/Exchange timing/Password reset page)

Guessing common usernames
(jsmith, testuser)

Anonymous enumeration
 domain controller/LDAP, or other services

OSINT

0 10 20 30

External Network Compromise Internal Network Compromise Red Team Attack Simulation Social Engineering Engagement

Source: Rapid7

Figure 15: Credential Capture: How Did You Gather Usernames?

Techniques reflected occurred in aggregate more than one time.

 20

Now, usernames, nominally, aren’t secret, and are sometimes technically “public.” After all, if nobody knows your username,
they can’t email you, assign you document permissions, or anything like that. That said, we can see that OSINT (or, open source
intelligence) is often used to gather the likely usernames used in a given enterprise—that would include social networking sites
like LinkedIn and Facebook, where employees can share, wittingly or not, their names, usernames, and places of employment.
On internal engagements, we see that attackers usually use internally public, anonymous enumeration sources, such as a
domain controller or LDAP service.

We don’t think we’re at a point yet where we can say definitively that usernames should be treated as internal secrets, but we
can say that enterprises shouldn’t make it easy for attackers to build a list of valid usernames. Indeed, the second most popular
way to collect usernames from the outside is through website enumeration, which is when a web application gives away
information on what is a valid username and what isn’t. While controlling public OSINT is difficult for any but the most secretive
organizations, discovering and disabling anonymous enumeration sources through overly permissive domain controllers and
web applications can make an attacker’s job much more difficult.

Purloining Passwords

Of course, passwords are supposed to be secret; they’re the one secret everyone in an organization is supposed to keep just
for themselves so they can access the shared, internal secrets that make an organization function. However, there are myriad
methods to acquire these passwords, especially when they’re generated by humans and their woefully unoriginal meat brains.

By far, the most common way to “guess” a password, either on an internal or external engagement, is to make sure your
guesses are especially accurate. The No. 1 method is password spraying, in which the attacker already knows (or has a good
idea) of a list of valid usernames, but tries only a few of very special, unoriginal passwords. This technique is much like the old
huckster’s technique of “cold reading,” where the “psychic” appears to make some very intimate assertions about the subject.
In fact, though, they’re relying on knowledge of the general human condition—nearly everyone has a lost love with the first initial
“M,” a dead relative with a first initial of “J,” and a desire to address some unfinished business with either.

Disclosed from third party password dump
(e.g., pastebin, haveibeenpwned)

Manual Social Engineering
(e.g., phone call to tech support)

Some other method

Known default account
(e.g., admin/cisco)

Automated Social Engineering
(e.g., phishing with an executable payload)

Disclosed from storage
(e.g., passwords.xls)

Guessable, organization specific
(e.g., CompanyName2018)

Guessable default account
(e.g., admin/admin)

Disclosed in plaintext
(e.g., source code, accessible FTP sites, etc.)

Disclosed from privileged storage
(e.g., /etc/shadow, pass-the-hash)

Disclosed from network challenge-response traffic

Man-in-the-middle

Offline password cracking with a hash file.

Password spraying
(e.g., Summer2018!)

0 10 20 30

Source: Rapid7

Figure 16: Credential Capture: How Did You Obtain Passwords or Password Hashes?

 21

So too, people are constantly inventing and reinventing password schemes that comport with their company policy: It must be
at least eight characters, have some numbers and a bit of punctuation, be easy to type, be easy to remember, and be easy to
change on a 90-day schedule. And nothing fits that bill better than “Summer2020!”10

Hacking Hashes

The second most common method of obtaining good passwords is by first collecting a set of hashes, or encrypted passwords,
then throwing huge dictionaries along with processor power at them. In fact, the sources of hashes are somewhat varied, as we
can see in Figure 17:

Collecting password hashes is commonly a first-order target of an internal network assessment, since they’re so useful, but
passwords are hashes precisely so they can’t be simply read and used by attackers. However, should the hashfile fall into
the wrong hands, it’s the unfortunate truth that they tend to be full of easily cracked passwords. Figure 18 shows that when a
hashfile is obtained, some proportion of passwords are cracked within the agreed-to engagement time.

10 If this is your password, change it now. Really. And not to “Autumn2020!”

36 (43.4%)

23 (27.7%)

20 (24.1%)

2 (2.4%)

2 (2.4%)

/etc/shadow or /etc/passwd file

Database dump

LM Hashes

Some other source

NTDS.dit file

Source: Rapid7

Figure 17: What Kind of Hashes Did You Collect?

External Network Compromise

Internal Network Compromise

Red Team Attack Simulation

Social Engineering Engagement

0 25 50 75 100

Figure 18: About What Percentage of the Passwords Did You Crack?

Outlines correspond to distribution. Line breaks correspond to the 25%, 50% (median), and 75% quantiles.

 22

Not only do we see that truly strong passwords are rare in a given hashfile, but we can also confirm that people pick very
guessable, predictable passwords when given half a chance:

Watch Out for Null Sessions

One popular method for confirming guessed or cracked passwords is by leveraging Windows Null Sessions. Once upon a time,
null sessions were quite common in Windows-based LANs, but in recent years, Windows administrators have realized that
they don’t offer much other than this handy service for attackers. Today, only 40% of surveyed penetration testers found null
sessions enabled on domain controllers, which is down from the half-and-half reporting from 2019.

Today, anonymous null sessions are either disabled or their state is undefined on new Windows machines.11 Because they’re not
disabled by default across the board, Windows domain administrators need to go out of their way to disable them.

11 https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/network-access-restrict-anonymous-access-to-named-pipes-and-shares

No
25 (60%)

Yes
17 (40%)

Source: Rapid7

Figure 20: Did Any Domain Controllers Have Null Sessions Enabled?

32 (36.0%)

30 (33.7%)

27 (30.3%)Any variation of the word "password" (i.e., Password1, P@55w0rd, etc.)

Some part of the company's name (i.e., Rapid7Rulez!)

SeasonYear (i.e., Spring2019, Fall2019!, W1nt3r18, etc.)

Source: Rapid7

Figure 19: Guessable Cracked Passwords

Set limited to engagements where password cracking was in scope.

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/network-access-restrict-anonymous-access-to-named-pipes-and-shares

 23

Privileged Accounts and
Sensitive Data

While regular user accounts are often
the way into a given organization, the
most sensitive data is often beyond the
reach of that one user with a guessable
password. The easiest way to obtain
sensitive information is to escalate
to the level of a Domain or Enterprise
Administrator, and in 31 internal
network compromises, the one leads to
the other, as shown in Figure 21.

Lockout Policies and 2FA

Lockout policies and two-factor
authentication (2FA) are important
security controls to both protect
passwords and limit their utility once
discovered by attackers. Unfortunately,
their deployment is scattered or
otherwise ineffective in today’s
enterprise environments. Figure 22 is
especially troubling.

Here, we can see that only a small
minority of external engagements
were hindered significantly by account
lockout policies. This is not to say lockout policies aren’t effective on the services they cover; rather, the lockout policies either
are ineffective because the penetration tester is spraying a small number of passwords across all users (thus, staying below
the threshold for each tested user), or there were services available—usually email—that did not enforce the lockout policy
employed by the main authentication system.

54

331

No

Yes

Yes No
Found Sensitive Data?

Obtained domain
or enterprise

admin access?

Source: Rapid7

Figure 21: Internal Network Compromise: The Path of Least Resistance to Sensitive Data

Privileged accounts provide the keys to unlock the credential vaults. Value in cell represents
enagement count. Only cases with responses presented.

45 (61.6%)

21 (28.8%)

3 (4.1%)

2 (2.7%)

1 (1.4%)

1 (1.4%)

They got me blocked

They made things take longer, but they didn't stop me

They prevented me from using auth attacks

I locked out legitimate users, oops.

I know for a fact there were no account lockouts on the services I tested

I was aware of lockout policy and carefully stayed under the thresholds

Source: Rapid7

Figure 22: External Engagement: How Effective Were Lockouts?

Count reflects only available responses.

 24

That said, our surveyed pen testers did run into 2FA more often this year than last year:

In our 2019 survey, we saw 2FA only 21% of the time, while this year, we see a significant growth to 35%. Again, in order to be
effective, 2FA needs to cover every egress point, which means that all secondary authentication systems either need 2FA, or
they need to employ a different, unique password.

Securing Credentials

The best defense against both password spraying and protecting the contents of hashfiles from commodity cracking is,
somewhat surprisingly, the same: Don’t rely on humans to pick passwords. The one program any IT organization can take on
to best enhance the security of their organization would be to standardize on machine-controlled password management.
There are many solutions to choose from, but ultimately, you want some kind of mechanism to generate, and save, strong,
long, unique passwords, and get everyone in the organization on board with it, both at work and at home. Nearly all offensive
operations, either simulated through a penetration test or conducted for real by actual criminals, involve guessing, cracking, or
otherwise obtaining a critical password at some stage of the process.

No
64 (65%)

Yes
35 (35%)

Source: Rapid7

Figure 23: Was Two-Factor Authentication Enabled on Any Services You Tested?

 25

THIS ONE TIME ON A PEN TEST:

Outwitting
the Vexing
VPN
By: Robert Stewart

Just as we do with the vast majority of our engagements, I started by digging
around the internet looking for information about my target’s employees. One
thing I had a hard time figuring out was what their username format was.
I scraped the metadata from documents they hosted, used resources like
hunter.io, and also used the Harvester to dig up what I could. But, I was still
not positive on the format. Most companies use common formats like FLast,
or First.Last. To validate the username formats, I was using a tool called
lyncsmash, which leverages a timing vulnerability in the Lync service used by
on-premises Skype servers. Testing FLast, and First.Last turned up nothing
for me, but on my third try, I thought to use LastF, and that turned out to be
the ticket. I start seeing a fair amount of valid usernames scroll by.

I parsed my list of usernames for valid accounts and found that out of 482,
I ended up with 230 valid accounts. This was still a good number, so I kept
rolling with a password spray using lyncsmash. After about my fourth try,
I hit some gold: Eleven accounts came back, all using the same weak and
guessable password.

You can’t hate on having 11 accounts to validate external access with, am I
right?!

While doing my OSINT, I found several external services that my target used
for things like email, VPN, and some other remote access stuff. But then
came the low: They were using multi-factor authentication (MFA) on every
external portal. Ugh. So, I started thinking about it and realized that their VPN
has several different authentication profiles. So, I tested all of them, just to be
sure I didn’t leave a stone unturned. Unfortunately, no luck.

I went back to doing more OSINT, hoping to find something I could log in
to with these accounts. And out of the darkness, I found it: a second VPN
endpoint. And, this one had an extra authentication profile the other didn’t,
which was used for smartphones to gain access to the network. And, it just
so happened that the profile didn’t require MFA!

Score!

I broke out the trusty SSL VPN Linux tool openconnect and hopped right into
their internal network.

 26

Detection, Response,
and Defense
Detection and response (D&R) is a critical component of any mature security regime, since
its existence recognizes that prevention technologies eventually fail in some way. That said,
sometimes D&R isn’t in scope for a given penetration testing engagement. While it’s always in
scope for red team simulations—it wouldn’t be much of a simulation without it—it usually isn’t
a real blocker in a basic internal network compromise. D&R might (and should!) alert during an
internal network compromise, but typically, the penetration tester is allowed to resume the test
after getting “caught,” since being stealthy and avoiding those aren’t really the purpose of those
engagements. However, the rate of detection across engagement types is interesting:

Figure 24 indicates how often the pen tester was noticed before (on the left) and after (on the right) internal access to an in-
scope asset was achieved. When D&R fires before access is obtained (red, on the left), we can be confident that D&R is doing
its job as a primary control. If it fires after access obtained (red, on the right), it’s doing its job as a secondary control. Although
the sample size is small for red teams, we can see that usually they are undetected throughout the engagement, while standard
internal network compromises are detected somewhat more often after compromise, meaning that the organization has at
least some chance to notice and respond to the type of breach performed.

11
15

19

7

3
2

4

1

10 8

15

3

Social Engineering Engagement (n = 18)

Red Team Attack Simulation (n = 5)

Internal Network Compromise (n = 26)

Before After

Not Detected Detected

Source: Rapid7

Figure 24: Were You Detected, Caught, or Blocked by the Blue Team, SOC, or Physical Security Before or After Internal Access?

Only includes engagements where infiltration was in scope and responses provided.

 27

Fundamental Prevention

While automated D&R is a critical component of a mature IT security program, there are some fundamentals that all
organizations would do well to review before their next penetration test. Broadly, these fundamentals are:

• Review your password management strategy. So many penetration tests end up with lists and lists of poorly
chosen, human-generated passwords, regardless of whatever other fancy security controls are in place. Credential
management can, and should, be a full-time function of an organization’s IT security program, and the more users and
services that can be moved to automatically generated, automatically rotated passwords, the better. It can be painful
at first to adopt machine-controlled password management, but after a while, it will become second nature. Training
and supporting users in the use of password management solutions will make them all but impervious to accidentally
leaking passwords through social engineering, as well as render a purloined NTDS.dit hash file all but useless.

• Review your patch management strategy. The best use of an internal network assessment is to figure out where your
patch management strategy is failing—what dark, cobwebby corners of your IT infrastructure aren’t getting routine
reviews for patches and updates. If an enterprise is relying on the users to do the right thing and click through those nag
screens for updates (instead of hitting “later” again and again, forever), your penetration testers will almost certainly be
overwhelmed with so many exploitable vulnerabilities that you’ll only hear about the most egregious examples of where
individual people have failed to keep up on updates.

• Employ network segmentation wherever possible. Small, manageable network segments can do worlds of good
when it comes to containing an internal breach. Penetration testers spend a fair amount of time and energy not
so much on getting that first shell, but in deciding where to go next. Big, flat networks can present hundreds of
opportunities for lateral movement, and also tend to be difficult to manage with expensive D&R programs. The name of
the game here is to bottle up attackers, both criminals and penetration testers, and make it difficult to move from asset
to asset in search of systems that are both compromisable and useful launching points for the next compromise.

Sites that are lacking in one of these three fundamental information security practices can be compromised trivially by an
experienced attacker, and to be honest, paying for a penetration test when one or more of these practices aren’t being followed
is probably a waste of everyone’s time.12

A segmented network with reasonable patch management and machine-generated passwords for all user and service
accounts is just about the most secure position to be in when the penetration tester shows up. This will ensure that the client is
getting the absolute most bang for their offensive security buck. Penetration testing isn’t really about testing technologies and
policies; that’s the job of QA and HR. Instead, it’s best to think of pen testing as being about testing assumptions about those
technologies and policies.

Penetration tests are almost always about making incremental improvements to existing processes and technologies, rather
than pointing out that a process is totally lacking in the first place. The most impactful penetration tests are those that find
that one lone system or that one forgotten network that somehow got looked over by in-house staff, and report back exactly
how they found it and what they did to compromise it. In the end, penetration testing is just about the most effective way to to
learn where assumptions don’t match up with reality when it comes to running intensely complicated information technology,
and the best penetration testers will make this the focus of any after-action report so the client can adjust their assumptions
accordingly.

12 That said, if you need a business justification for tackling one of these areas, a penetration test can go a long way to help you convince your management that time and resources

should be spent!

 28

QUESTIONS?
Email us at research@rapid7.com

